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ABSTRACT 

 

Realized volatility of stock returns results from a smooth stochastic process and discontinuous jumps.  

The jump component is often measured by subtracting bipower variation of high frequency data from 

realized variation.  However, measurement of the bipower variation depends on trading volume.  

Generally, when the stock return follows a Wiener process, so does the trading volume.  It turns out the 

relative trading volume affects the size of return fractality, and thus, stock returns appear mostly 

characterized by jump elements.  To the extent that the stock’s return fractality is measured by its fractal 

dimension, the paper also offers an alternative approach to computing fractal dimension. 

 

INTRODUCTION 

 

The standard Wiener process as is often purported to be the manifestation of random walk assumes 

stochastic continuity, and thus, seems to miss some important elements in describing stock price 

behaviors, when stock price process is characterized by occasional discontinuous jumps, e.g. Merton 

[11].  Efforts have been made to explain how occasional jumps can converge to a long-run level of 

volatility rate, see for example, Bollerslev [5], Nelson [6] and Engle, et al. [7]. 

 

Recently, there have been several studies to measure the jump component of stock price processes, e.g. 

Barndorff-Nelson [3,4] and Andersen, et al. [2].  In these studies, the stock’s realized volatility follows 

from the quadratic variation process as the increment as the sampling frequency of the underlying 

returns increases.  It is also shown that the realized volatility can be decomposed asymptotically into the 

bipower variation attributable to smooth processes and another variation, which arises from the 

discontinuous jump process.  Thus, one can measure the jump variation by subtracting bipower variation 

from realized volatility.  Clearly, depending upon how the bipower variation is computed, the computed 

jump size can be widely different from what it really is.  In this paper, we show that the major part of the 

realized volatility may come from the discontinuous jumps rather than smooth stochastic bipower 

variation, if we recognize the existence of the return fractals. 

 

ECONOMICS OF RETURN FRACTALITY 

 

We often multiply the return over a short time step, , by  time intervals to cover the entire longer 

term horizon, , to compute the return over , , i.e. 

 

 
 

The rationale for doing this is that whatever happens over a time period  can be extrapolated by 

whatever happens during  linearly by , as .  The daily, monthly or quarterly returns are 

annualized in this way, but this simplification has no predictive content. 
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Realistically, the factor that  is multiplied by, i.e. , cannot be used to forecast the return over , i.e. 

.  Perhaps, we should not use the simple calendar time period to extrapolate a shorter-term return to 

get a longer-term return.  The appropriate time units as applied to the financial market cannot be one-

dimensional.  Some other “effective” time units, , may be feasible. 

 

To detail our discussion, we remind readers of the fact that with the calendar time dimension being one-

dimensional, i.e.  the time segment  is exactly decomposed into  nonoverlapping 

segments.  The length of each segment  is represented by a formula 

.  In this case, if an event in each segment can be deduced from the whole linearly, each segment 

is “similar” by a ratio . 

 

What if each calendar time period has different characteristics influenced by many economic factors so 

that each day is not the same day?  In other words, the time unit that we deal with is a two-dimensional 

“object,” for example, , which can be describable by a two-tuple pair of some unknown variables 

 and  such that .  Thus, if each segment is represented by  and , where 

 then it is given by a formula, 

.  That is, the size of each decomposed timepiece can be described just as we dimension a 

rectangular object with  and each of these “rectangular” parts is deducible from the whole by a 

similarity of ratio  

 

Generalizing this pattern of similarity, a -dimensional time unit as applied to the stock return can then 

be decomposed into  subpieces from the whole by a similarity of ratio   See 

Mandelbrot [9].  In mathematics, the exponent, , is known as the Hausdorff dimension named after a 

German mathematician, Felix Hausdorff or Hurst exponent, [8].  Interestingly, however, the Hausdorff 

dimension can be fractional, and hence, named “fractal dimension.”  Furthermore, the more 

sophisticated an object is, the higher the value of the fractal dimension. 

 

To explore the concept further, imagine that a long time period is divided into  time intervals for a 

similarity ratio .  Solving the expression for , 

 

 

 

Eqn (2) states that the value of  in eqn (1) depends on the quantity,  and the fractal dimension 

.  Generally,  nor , and hence, .  We define the expression in the 

parenthesis as 

 

 

 

 being the reciprocal of the similarity ratio  then represents the total number of times that a given 

return over a short time period can be replicated to produce an annual return.  That is, the value  

provides information as to how for example, a year or even a day should be divided, or  the appropriate 

total number of “economic” or “effective” time periods in a year or in a day. 

 



Assuming that  represents a year or a day, i.e. , for convenience and hence the annual (or daily) 

return , our return forecasting model is 

 

 

 

Typically, this concept of the fractal dimension in the financial market does not necessarily result in the 

squared variation, when the fractal dimension is not one (1).  We now relate eqn (4) to the theory of 

bipower variation as follows. 

 

BIPOWER VARIATION 

 

Consider the following quadratic variation for the cumulative return process: 

 

 

 

Define, for example, the daily-realized volatility or variation by the summation of the corresponding 

 high frequency intra-daily squared returns, where  is the number of periods and  is 

assumed to be an integer, i.e. 

 

 

 

Then, the realized volatility is the increment of quadratic variation process as the sampling frequency of 

the underlying returns increases.  That is, 

 

 

 

Barndorff-Nielson and Shephard [3] introduces a general form of variation, where the absolute values of 

two subsequent intraday high-frequency or daily security returns are multiplied together to produce what 

they term the realized bipower variation, i.e. 

 

 

 

It is shown that in the  case, this will, up to a simple known multiple, converge to the same 

probability limit as realized variance when prices follow a stochastic volatility process and that for this 

bipower variation, the limit does not change with the addition of rare jumps.  Thus, substituting eqn (4) 

into eqn (8), the standardized realized bi-power variation can now be defined as: 

 



 

 

Then, as the sampling frequency increases, the realized bipower variation approaches to: 

 

 

 

Combining the results in eqn (7) and eqn (10), we conclude that 

 

 

 

With non-negativity in jumps, 

 

 
 

The conclusion is that the higher the fractal dimension, the lower the bipower variation and hence, the 

greater the jump for any given realized volatility.  Thus, we would expect much larger jumps in 

magnitude than what we may see from computing the bipower variation in a traditional sense, if the 

stock carries the fractal dimension exceeding one (1). 

 

THE IMPLIED STOCK PRICE PROPERTIES 

 

Assuming that the daily trading horizon is 390 minutes, the log price relatives can be represented 

heuristically as 

 

 

 

The symbol  is the continuously compounded rate of return from  to .  Assuming that all one-

period returns are of stochastically independent identical distribution such that 

 and , the central limit theorem states that 

 

 

 

 

 

Define .  Then, 

 

 

 

 

 



Now suppose that the stock price follows some modified Wiener process with a daily (or an annual) drift 

 and a daily (or an annual) volatility , where  and .  Then 

        

 
 

where  with  and  represents a normal distribution.  As usual, 

  The log price in the ôIt process is 

          

 

 

Assuming that , the expected value and the variance of  are  and 

 respectively. 

 

FRACTAL DIMENSION AND VOLATILITY 

 

In the past, the issue of volatility has been dealt with along the lines of either GARCH models or fractal 

returns.  Despite some known methods of approximating the fractal dimension, e.g. Mandelbrot, et al. 

[10] and Wavelet transforms based on a Taylor series for a time series signal , we take somewhat 

simpler approach to measuring fractal dimensions.  We conjecture that the fractal feature of securities 

returns, which determines the “effective” time period for forecasting, can be explained by the volume of 

trade.  In other words, we regard the effective time period as the “trading time.”  We now define more 

formally securities return fractal as follows. 

 

Suppose that  in eqn (4).  Then, for any , a stock return has a dimension , if and only 

if there is some positive constant  such that 

 

 

 

Eqn (15) is equivalent to solving for  by taking the limit as 

 

 

 

Our analysis is then that given a fractal dimension , the trading volume, which determines the value  

depends on the time step .  To model it, assume that the relative trading volume  

is  and 

 

 
 

Eqn (17) states that the higher the value of , and the smaller the time step , we expect the lower 

relative trading volume.  If , clearly , which is constant.  A regression 

equivalent to eqn (17) is 

 



 

 

Alternatively, eqn (17) also states that the fractal dimension is a function of both  and   That is, 

 

 

 

If  is a Wiener process, the security’s fractal dimension also follows the ôIt  process, and it is easy to 

show the expected mean and the volatility of a change in . 

 

SUMMARY AND CONCLUSION 

 

Realized volatility of stock returns results from a smooth stochastic process and discontinuous jumps.  

The jump magnitude is measured by subtracting bipower variation from realized variation.  However, 

the presence of the return fractality reduces the bipower variation raising the importance of the jump 

component of realized volatility.  In addition, it is possible that the fractal dimension itself can follow its 

own stochastic process. 
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