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ABSTRACT 

 

The water distribution problem of the Mexican Valley is modeled as a three-person noncooperative 

game in which agriculture, industry, and domestic water users are the players, and the total water 

amounts supplied to the users are the payoff functions. The equilibrium is determined by solving a 

nonlinear optimization problem, which can be derived based on the Kuhn-Tucker necessary 

conditions. All constraints are linear and the objective function is quadratic, so standard solution 

algorithm and software can be used.   

 

1. Introduction 

 

The limited amount of natural resources creates conflicts between the users, since any user can 

increase its supply only in the expense of the others. As it is well known, water shortage is one of the 

most worrying problems of our society. According to recent predictions, by 2010 we will need about 

17% more water than available to feed the world. Therefore efficient usage of water and optimal 

water distribution schemes become necessities.  

The Mexican Valley is one of the most critical areas, since Maxico City with its 19 million 

inhabitants is the most populated city in the world, and agriculture is the main economic activity in 

the region which requires large amount of irrigation water. In addition there are industrial users, and 

the development of industrial employers is crucial for the welfare of the population. The water 

supply is divided into surface water, groundwater and treated water. The groundwater supply has the 

best quality, and treated water has the worst. So, treated water can have only limited usage. The 

groundwater resources are overexploited at a rate of 100% or more, which has the direct 

consequences of drying springs and sinking ground up to 0.4m/year in some areas. 

The current water shortage situation raises the necessity of importing surface and groundwater from 

the neighboring watershed, which also might raise dispute over water resources. 

The water distribution problem of the Maxican Valley is modeled as a three person game. where the 

three users are the players and the total water amounts supplied to the users are the payoff functions. 

There are many earlier works dealing with similar problems. The survey paper of Hipel (1992) and 

the more recent paper of Kapelan et al. (2005), Donevska et al. (2003), Coppola and Szidarovszky 

(2004), Salazar et al. (2010) can be mentioned among others. As the game theoretical concepts and 

methods are concerned the books of Szidarovszky et al. (1986) and Forgo et al. (1999) give 

comprehensive summaries.   

 

2. Mathematical Model 

 

The three players are agriculture (k=1), industry (k=2) and domestic users (k=3). For each player the 

decision variables are 

ks =surface water supply from local source 

kg =ground water supply from local source 

kt =treated water supply 
*

ks =imported surface water supply 
*

kg =imported ground water supply 
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So, the strategy of player k is the 5-dimensional vector ),,,,( **

kkkkkk gstgsx . The strategy set of the 

players are determined by feasibility constraints. The three users have two common constraints: 

      kkkkkk Dgstgs **                                                                                        (1)   

and  

      min**

kkkkkk Dgstgs       (k=1, 2, 3),                                                            (2) 

where min

kD  is the minimum necessary amount, and kD  is the total demand of player k. Constraint (1) 

is requested to avoid wasting water. In addition to these constraints each user has its own conditions.  

Agriculture (k=1) has two special water quality related constraints. Some crops can use only ground-

water, since they are very sensitive to the quality of the water they are irrigated with. If 1  is the 

ratio of the water need of these sensitive crops to the total water amount used for irrigation, then it is 

required that  
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Some less sensitive crops can tolerate treated water, which has the worst quality. If 1  is ratio of the 

water need of these less sensitive crops to the total water amount used for irrigation, then we have to 

assume that  
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since treated water cannot be used to irrigate crops which cannot tolerate treated water. 

Industry (k=2) has very similar constraints, since there are certain usages which can be supplied only 

by groundwater as well as some other usages can tolerate treated water:  
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and  
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Domestic users (k=3) have limitations only on the amount of treated water, since it can be used only 

for limited purposes (such as irrigating parks, golf courses, etc). Hence this constraint can be given 

as  
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Notice that all constraints (3)-(7) can be rewritten into linear forms. 

The total water availably in both local and imported surface and groundwater resources can be 

represented by the additional constraints: 

           sSsss 321                                                                                                        (8) 

           gSggg 321                                                                                                      (9) 
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where the right hand sides are the maximum available amounts supplied from the different resources. 

We require equality in constraints (8) and (9) to be sure that all local resources have to be used 

before water is imported from other watersheds. 

The payoff function for each player is the water supply: 

           Maximize **

kkkkk gstgs .                                                                              (12) 

Hence we have a three-player noncooperative game with linear payoffs and linear constraints 

defining the strategy sets of the players. 
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3. Solution Methodology 

 

In our case the number of players is n=3, the strategy of player k is the five-dimensional vector kx , 

and the strategy set of this player is defined by the individual constraints 

               kkk axA                                                                                                                (13) 

obtained from (1) through (7) and by the joint constraints (8) through (11): 

               bxBxBxB 332211 .                                                                                         (14) 

The payoff of player k can be written in general as  

               maximize k

T

k xc .                                                                                                       (15) 

Since the constraints are linear, the Kuhn-Tucker regularity conditions are satisfied, so there are 

nonnegative vectors kv  and kw  such that  
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               bxBxBxB 332211  
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Because of the other constraints the left hand side of the last condition is always nonnegative, so its 

minimal value is zero. Consider now the following quadratic programming problem with linear 

constraints: 

 minimize 332211
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                 bxBxBxB 332211 . 

The Nikaido-Isoda theorem implies the existence of at least one equilibrium, so there is at least one 

solution of system (16). So the optimal objective function value is zero, and all optimal solutions 

satisfy the Kuhn-Tucker necessary conditions (16). Because of the linearity of the game, conditions 

(16) are also sufficient, implying that all optimal solutions of problem (17) are Nash-equilibria of the 

three-person game. For the numerical solution of (17) standard methodology and software is 

available.  

 

4. Numerical Results 

 

The data for our case study were given by a research group of the Universidad Autonoma Chapingo, 

who investigated the same problem by using different solution concept and methodology (Salazar et 

al., 2007). The input data are given in Table 1. In addition, the available water supplies from the  

 

Table 1 

 k=1 k=2 k=3 
min

kD  594 177 1092.8 

kD  966 230 2123 

k  0.41 0.066 - 

k  0.33 0.20 0.06 
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different sources are limited as given in constraints (8) through (11) with sS =58, gS =1702, *

sS =453 

and *

gS =169. These quantities and min

kD  and kD  are given in mill m
3
/year, the constants k  and k  

are ratios, unitless quantities. The equilibrium was computed by solving the optimization problem 

(17). The results are presented in Table 2. The objective function at the optimum was zero showing 

  

Table 2. Numerical Results 

 k=1 k=2 k=3 Total 

ks  0 0 58 58 

kg  966 205.353 530.647 1702 

kt  0 0 75.702 75.702 
*

ks  0 24.647 428.353 453 

*

kg  0 0 169 169 

Total 966 230 1261.702  

 

that global optimum was reached. All demands of agriculture and industry can be satisfied, since the 

received amounts are their total demands. The domestic demand can be satisfied only partially, on 

59.43% level. All surface and groundwater resources are used. The restrictive constraints on treated 

water usage make the use of more treated water impossible. Importing the large amount of surface 

and groundwater into the Maxican Valley will raise severe conflicts with the neighboring regions. In 

addition, a larger amount of treated water has to be used which raises the important issue of water 

quality, since under the given constraints the only way to increase water supply is to increase the 

treated water usage. In order to have larger water supply and avoid serious social conflicts further 

developments are needed in combination with more efficient water usage by the three sectors. Maybe 

a market-driven water pricing policy would give incentives to the users.  

 

5. Conclusions 

 

The water distribution problem in the Maxican Valley was modeled as a three-person non-

cooperative game. The three users were the players, the supplied water amounts the payoffs, and the 

strategy set were determined by supply and water quality constraints. The Nash equilibrium of this 

game was determined by solving a special quadratic optimization problem with linear constraints, 

which was derived based on the Kuhn-Tucker conditions. 

The numerical results indicate that a combination of investment for further developments in the 

infrastructure is needed in combination with more efficient water usage in order to avoid serious 

social conflicts and water shortages.    

 

 6. References 

 

Szidarovszky, F., M. Gershon, L. Duckstein (1986) Techniques of Multiobjective Decision Making 

in Systems Management. Elsevier, Amsterdam. 

Hipel, K. W. (1992) Multiple objective decision making in water resources. Water Resour Bull 28(1): 

3-11. 

Kapelan, Z. S., D. A. Savic, G. A. Walters (2005) Multiobjective design of water distribution 

systems under uncertainty. Water Resour Res 41: W11407.  

Donevska, K., S. Dodeva, J. Tadeva (2003) Urban and agricultural competition for water in the 

Republic of Macedonia. http://afeid.montpellier.cemagref.fr/mpl2003/Conf/Donevska.pdf 

Coppola, E. and F. Szidarovszky (2004) Conflict between water supply and environmental health 

risk: A computational neural network approach. International Game Theory Review 6(4): 475-492. 

http://afeid.montpellier.cemagref.fr/mpl2003/Conf/Donevska.pdf


 5 

Forgo F., J. Szep, and F. Szidarovszky (1999) Introduction to the Theory of Games. Kluwer, 

Dordrecht. 

Salazar, R., F. Szidarovszky, and A. Rojano (2010) Water distribution scenarios in the Mexican 

Valley. Water Resources Management, DOI 10.1007/s11269-010-9589-9. 

Salazar, R., F. Szidarovszky, E. Coppola and A. Rojano (2007) Application of game theory for a 

groundwater conflict in Mexico. Journal of Environmental Management 84:560-571. 

 

 

 

 

 

 


