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ABSTRACT 
 

The constrained maximum flow problem is to send the maximum flow from a source node to a sink node 

in a directed capacitated network for which the total cost of the flow is constrained by a budget limit. It has 

many applications in telecommunications, logistics and computer networks. We present a new polynomial 

cost scaling algorithm and compare its computational time against the existing polynomial combinatorial 

algorithms. We show that the proposed algorithm is on average 25 times faster than the double scaling 

algorithm, and 32 times faster than the capacity scaling algorithm. 

  

 

INTRODUCTION 
 

The constrained maximum flow problem is a variant of the maximum flow problem. Many algorithms 

were proposed to solve the maximum flow problem, but very few articles appeared in the literature for its 

variants. Ahuja and Orlin [2] propose an )log),,(( UnCmnmSO  capacity scaling algorithm, where n  is 

the number of nodes in the network; m , the number of arcs; C , the largest arc cost; U , the largest arc 

capacity; and ),,( nCmnS , the time to find a shortest path from a single source to all other nodes. Çalışkan 

[4] proposes a double scaling algorithm that runs in ))(logloglog)/(log( 2 nCUmmnnmO  time with the 

use of dynamic trees due to Goldberg and Tarjan [5]. In this research, we present a cost scaling algorithm 

that runs in ))(log( 2 nCmnO  time and provide the results of computational tests that show that the new 

algorithm significantly outperforms the existing polynomial algorithms. 

 

 

PROBLEM DESCRIPTION 
 

Let ),(= ANG  be a directed network consisting of a set N  of nodes and a set A  of arcs. In this 

network, the flow on each arc ),( ji  is represented by the nonnegative variable ijx  with a cost ijc  and 

capacity iju . The constrained maximum flow problem is to send the maximum possible flow from a 

source node Ns  to a sink node Nt  where the total cost of flow is constrained by the budget, D . 

For simplicity of exposition, we assume that there is an arc Ast ),(  with 0=tsc  and 

},{min=
),(),( itAtisiAists uuu , an upper bound on the maximum flow from s  to t . Without loss of 

generality, we assume that all arc capacities and all arc costs are nonnegative integers, and there exists a 

directed path between every pair of nodes in the network. These assumptions are not restrictive, as 

transformations in Ahuja and Orlin [2] could be applied to satisfy them.  

 



The problem then can be formulated as follows:  
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Theorem 1 (Ahuja and Orlin [2])  Let *x  be an optimal solution to the minimum cost flow problem 

with the same cost vector as the constrained maximum flow problem and with a source supply equal to the 

optimal flow value for the constrained maximum flow problem. Then, *x  is also an optimal solution to 

the constrained maximum flow problem if Dcx =* . 

  

Proof: See Ahuja and Orlin [2], page 91. 

 

By Theorem 1, we can modify any algorithm for the minimum cost network flow problem to solve the 

constrained maximum flow problem. Our cost scaling algorithm for the constrained maximum flow 

problem is based on this idea. 

 

PRELIMINARIES 
 

We denote the largest arc capacity in G  by U , the largest arc cost by C , the number of nodes by n , 

and the number of arcs by m . For each node Ni , we call }),(|{=),( GjiNjGiF  the forward 

star of i  in G . Similarly, for each node Ni , we call }),(|{=),( GijNjGiB  the backward star 

of i in G . The index of the node preceding a given node i  in a path is denoted by )(ipred . 

 

A  flow is a function {0}: RAx  that satisfies Eqs. 2 and 4. The value of tsx  is called the value of 

flow x . If a flow x  also satisfies Eq. 3, it is called a feasible flow. A pseudoflow is a function 

{0}: RAx  that satisfies only Eq. 4. For a pseudoflow x , we define the imbalance of node Ni  

as follows: ijAjijiAij
xxie

),(),(
=)( . 

 

If 0>)(ie  for some node i , then we call node i  an excess node, and we call )(ie , the  excess of  node

i . We also call a node that is an excess node, an active node. If 0<)(ie  for some node i , then we call 

node i  a deficit node, and we call )(ie , the deficit of node i . If 0=)(ie  for some node i , then we call 

node i  a balanced node. We also call a deficit or a balanced node, an inactive node. A pseudoflow with 

Niallforie 0=)(  is a flow. 

 

Given a flow or pseudoflow x , the corresponding residual network )(xG  is defined as follows: We 

replace each arc Gji ),(  with two arcs: ),( ji  and its reversal ),( ij , where ijji cc = . The residual 

capacity of ),( ji  is defined as ijijij xur = , and the residual capacity of ),( ij , as ijji xr = . We only 

include in )(xG  arcs with positive residual capacity. We associate a node potential )(i  for each node 

Ni . With respect to a set of node potentials , we define the reduced cost of an arc ),( ji  as 



)()(= jicc ijij . We use the concept of -optimality of the minimum cost flow problem in our cost 

scaling algorithm. This concept is due to Bertsekas [3], and independently, Tardos [6]. 

 

Definition 1 (Epsilon Optimality) A flow x  or a pseudoflow x  is called -optimal for some  and 

, if ijc  for all ),( ji  in the residual network )(xG .   

 

It is well-known that an -optimal flow is optimal for the minimum cost flow problem if 0= . When 

the arc costs are integers, any -optimal flow is optimal for n1/< , as the following lemma establishes: 

 

Lemma 1  For a minimum cost network problem with integer costs, if C , any flow x  is -optimal. 

If n1/< , then any -optimal flow is an optimal flow.  

 

Proof: See Ahuja et al. [2], page 363. 

 

We call an -optimal flow x  that also satisfies the condition Dcx =  an  -optimal solution (to the 

constrained maximum flow problem). We call an arc ),( ji  in the residual network )(xG  an admissible 

arc if 0<2/ ijc , and a path consisting entirely of admissible arcs, an admissible path. We define 

the admissible network of a given residual network as the network consisting solely of admissible arcs. 

We represent the outgoing arcs of a node i , i.e. the forward star of i , with )(iF , and the incoming arcs 

of node i , i.e. backward star of i , with )(iB  (in the residual network )(xG , with respect to a flow or 

pseudoflow x ). We also represent the admissible paths with predecessor indices. For a given admissible 

path, )(ipred  represents the node on the path that comes immediately before node i . 

 

 

THE COST SCALING ALGORITHM 
 

The algorithm and its procedures are formally described in Figures 1, 2 and 3. In another paper, we show 

that the algorithm runs in ))(log( 2 nCmnO time. The cost scaling algorithm obtains a series of -optimal 

solutions with decreasing values of , starting with C= . The algorithm then performs cost scaling 

phases by iteratively applying the improve_approximation procedure that transforms an -optimal 

solution into an 2/ -optimal solution. At the end of every -scaling phase, the flow is an 2/ -optimal 

solution to the constrained maximum flow problem, and at the end of the last -scaling phase, n/1< . 

Thus, by Lemma 1, the algorithm terminates with an optimal solution to the constrained maximum flow 

problem. 

 

algorithm  cost_scaling 

begin    

   set 0:= ; 0:=x ; C:= ;   

   while n/1  do  

      improve_approximation;   

      set 2/:= ; 

   end while   

end  
Figure 1: The cost scaling algorithm 

   



At the beginning of an -scaling phase, the solution ),(x  is -optimal for the constrained maximum 

flow problem by Definition 1 and Theorem 1. Procedure improve_approximation converts this -optimal 

solution to an 2/ -optimal solution (i) by converting the flow to an 2/ -optimal pseudoflow, and then 

(ii) by converting the 2/ -optimal pseudoflow to a flow and (iii) by restoring the condition Dcx =  via 

flow augmentations on admissible paths from s  to t . Thus, at the end of an -scaling phase, ),(x  is 

an 2/ -optimal solution to the constrained maximum flow problem. 

 

procedure  improve_approximation; 

begin 

   for every arc Aji ),(  do  

      if 2/>ijc  then 

         set 0:=ijx ; 

      else if 2/<ijc  then   

         set ijij ux = ; 

      end if 

   end for 

   while there is an active node i  in the network do  

      if there is an admissible arc ),( ji  in )(xG  then 

         push }),({min:= ijrie units of flow from node i  to node j ; 

      else 

         set 2/min)(:=)( )( ijiFj cii ; 

      end if 

      while Dcx < do 

         P :=  find_admissible_path;   

          augment })/(,min{min:=
),(),( ijPjiijPji ccxDr  units of flow along P  and ),( st ; 

      end while 

   end while 

end  
Figure 2: The procedure  improve_approximation of the cost scaling algorithm 

 

The procedure improve_approximation first creates an 2/ -optimal pseudoflow from an -optimal 

flow, but this may create imbalances at some nodes. The procedure then pushes flows from active nodes to 

inactive nodes to convert the pseudoflow into a flow. After each push, if Dcx < , the procedure  

find_admissible_path identifies an admissible path and we push the required amount of flow from s  to t  

to restore Dcx = . When an active node contains no admissible arcs, we increase the node potential to 

create admissible arcs emanating from that node. Figure 2 formally describes the procedure  

improve_approximation, and Figure 3 describes the procedure  find_admissible_path.   

 

 

COMPUTATIONAL RESULTS 
 

In order to test the empirical performance of the cost scaling algorithm, we generated problem instances 

using a random network generator similar to the one that was described in Çalışkan [4] and compared the 

cost scaling algorithm to the capacity scaling and the double scaling algorithms. All algorithms were 



procedure  find_admissible_path; 

begin    

   set :=P ; si := ; 

   while ti  do 

      j := First node in )(iF  for which ),( ji  is admissible;  

      if ),( ji  is admissible  then  

         add ),( ji  to P ;   

         set pred(j) := i; i := j; 

      else    

         set 2/min)(:=)( )( ijiFj cii ;   

         if si  then  

            remove arc )),(( iipred  from P ;   

            set i := pred(i); 

         end if 

      end if 

   end while 
   return P;   

end  
Figure 3: The procedure  find_admissible_path of the cost scaling algorithm 

 

coded in the same programming style, using the same network representation and data structures, so that 

there was no performance variation due to differences in implementation. We coded all algorithms in C++ 

and compiled with Microsoft Visual C++ 7.1, using the optimization option /O2. We conducted the runs 

on a computer with 2.0 GHz Intel Core 2 Duo processor and 2.0 GB of memory. We generated networks 

that have up to 16384 nodes and 524288 arcs in our experiments. The arc capacities were uniformly 

distributed in ][1,104  and the arc costs were uniformly distributed in ][1,102 . We generated 10 random 

instances for each combination of the parameters. Table 1 shows the average CPU times. 

 

The results in Table 1 show that the cost scaling algorithm is computationally superior. In the experiments, 

the cost scaling algorithm was up to 56 times faster than the double scaling algorithm with an average of 

25 times faster; and up to 173 times faster than the capacity scaling algorithm with an average of 32 times 

faster. Furthermore, it was significantly faster than both algorithms for every instance of the test problems, 

with a minimum of 19 times faster than the double scaling algorithm, and a minimum of 7 times faster than 

the capacity scaling algorithm. Thus, the cost scaling algorithm is empirically the fastest combinatorial 

polynomial algorithm for the constrained maximum flow problem. 

 

 

CONCLUSION 
 

In this research we propose a polynomial combinatorial algorithm for the constrained maximum flow 

problem that runs in ))(log( 2 nCmnO  time. The constrained maximum flow problem is important to 

study as it has many applications and it is related to some important classical combinatorial optimization 

problems. Our computational tests show that the proposed algorithm is significantly faster than the 

existing combinatorial polynomial algorithms for the problem: on average, 25 times faster than the double 

scaling algorithm, and 32 times faster than the capacity scaling algorithm. 

 



 

 

 

Network 

Size 

CPU times (sec.) CPU Time 

Ratios Cost 

Scaling (i) 

Double 

Scaling (ii) 

Capacity 

Scaling (iii) n m (ii/i) (iii/i) 

 256  2048  0.012  0.470  0.140  38  11  

512  4096  0.060  1.495  0.495  25  8  

1024  8192  0.188  4.258  2.466  23  13  

2048  16384  0.773  14.544  10.857  19  14  

4096  32768  2.895  67.509  93.971  23  32  

8192  65536  13.111  297.225  611.961  23  47  

16384  131072  155.013  †   †    -   -  

 256  4096  0.017  0.941  0.208  56  12  

512  8192  0.078  2.206  0.569  28  7  

1024  16384  0.272  7.487  7.607  27  28  

2048  32768  1.110  26.189  37.608  24  34  

4096  65536  4.352  104.308  294.300  24  68  

8192  131072  19.102  490.647  1341.136  26  70  

16384  262144  242.528  †   †    -   -  

 256  8192  0.041  1.923  0.413  47  10  

512  16384  0.122  4.603  1.639  38  13  

1024  32768  0.480  14.395  13.725  30  29  

2048  65536  1.687  49.539  189.025  29  112  

4096  131072  6.298  167.725  1088.305  27  173  

8192  262144  26.549  670.588  †   25   -  

16384  524288  325.738  †   †    -   -  

 

†  The program was stopped after 1400 seconds elapsed 

    

Table 1: CPU times of the cost scaling, double scaling and capacity scaling algorithms 
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