

A COMPUTATIONAL STUDY OF THE CONSTRAINED MAXIMUM

FLOW PROBLEM

Cenk Çalışkan, Woodbury School of Business, Utah Valley University, 800 W. University Pkwy,

Orem, UT 84058, (801) 863-6487, cenk.caliskan@uvu.edu

ABSTRACT

The constrained maximum flow problem is to send the maximum flow from a source node to a sink node

in a directed capacitated network for which the total cost of the flow is constrained by a budget limit. It has

many applications in telecommunications, logistics and computer networks. We present a new polynomial

cost scaling algorithm and compare its computational time against the existing polynomial combinatorial

algorithms. We show that the proposed algorithm is on average 25 times faster than the double scaling

algorithm, and 32 times faster than the capacity scaling algorithm.

INTRODUCTION

The constrained maximum flow problem is a variant of the maximum flow problem. Many algorithms

were proposed to solve the maximum flow problem, but very few articles appeared in the literature for its

variants. Ahuja and Orlin [2] propose an)log),,((UnCmnmSO capacity scaling algorithm, where n is

the number of nodes in the network; m , the number of arcs; C , the largest arc cost; U , the largest arc

capacity; and),,(nCmnS , the time to find a shortest path from a single source to all other nodes. Çalışkan

[4] proposes a double scaling algorithm that runs in))(logloglog)/(log(2 nCUmmnnmO time with the

use of dynamic trees due to Goldberg and Tarjan [5]. In this research, we present a cost scaling algorithm

that runs in))(log(2 nCmnO time and provide the results of computational tests that show that the new

algorithm significantly outperforms the existing polynomial algorithms.

PROBLEM DESCRIPTION

Let),(= ANG be a directed network consisting of a set N of nodes and a set A of arcs. In this

network, the flow on each arc),(ji is represented by the nonnegative variable ijx with a cost ijc and

capacity iju . The constrained maximum flow problem is to send the maximum possible flow from a

source node Ns to a sink node Nt where the total cost of flow is constrained by the budget, D .

For simplicity of exposition, we assume that there is an arc Ast),(with 0=tsc and

},{min=
),(),(itAtisiAists uuu , an upper bound on the maximum flow from s to t . Without loss of

generality, we assume that all arc capacities and all arc costs are nonnegative integers, and there exists a

directed path between every pair of nodes in the network. These assumptions are not restrictive, as

transformations in Ahuja and Orlin [2] could be applied to satisfy them.

The problem then can be formulated as follows:

 tsxmax (1)

 ..ts

 Nixx ji

Aij

ij

Aji

0=
),(),(

 (2)

 Dxc ijij
Aji),(

 (3)

 Ajiux ijij),(0 (4)

Theorem 1 (Ahuja and Orlin [2]) Let *x be an optimal solution to the minimum cost flow problem

with the same cost vector as the constrained maximum flow problem and with a source supply equal to the

optimal flow value for the constrained maximum flow problem. Then, *x is also an optimal solution to

the constrained maximum flow problem if Dcx =* .

Proof: See Ahuja and Orlin [2], page 91.

By Theorem 1, we can modify any algorithm for the minimum cost network flow problem to solve the

constrained maximum flow problem. Our cost scaling algorithm for the constrained maximum flow

problem is based on this idea.

PRELIMINARIES

We denote the largest arc capacity in G by U , the largest arc cost by C , the number of nodes by n ,

and the number of arcs by m . For each node Ni , we call }),(|{=),(GjiNjGiF the forward

star of i in G . Similarly, for each node Ni , we call }),(|{=),(GijNjGiB the backward star

of i in G . The index of the node preceding a given node i in a path is denoted by)(ipred .

A flow is a function {0}: RAx that satisfies Eqs. 2 and 4. The value of tsx is called the value of

flow x . If a flow x also satisfies Eq. 3, it is called a feasible flow. A pseudoflow is a function

{0}: RAx that satisfies only Eq. 4. For a pseudoflow x , we define the imbalance of node Ni

as follows: ijAjijiAij
xxie

),(),(
=)(.

If 0>)(ie for some node i , then we call node i an excess node, and we call)(ie , the excess of node

i . We also call a node that is an excess node, an active node. If 0<)(ie for some node i , then we call

node i a deficit node, and we call)(ie , the deficit of node i . If 0=)(ie for some node i , then we call

node i a balanced node. We also call a deficit or a balanced node, an inactive node. A pseudoflow with

Niallforie 0=)(is a flow.

Given a flow or pseudoflow x , the corresponding residual network)(xG is defined as follows: We

replace each arc Gji),(with two arcs:),(ji and its reversal),(ij , where ijji cc = . The residual

capacity of),(ji is defined as ijijij xur = , and the residual capacity of),(ij , as ijji xr = . We only

include in)(xG arcs with positive residual capacity. We associate a node potential)(i for each node

Ni . With respect to a set of node potentials , we define the reduced cost of an arc),(ji as

)()(= jicc ijij . We use the concept of -optimality of the minimum cost flow problem in our cost

scaling algorithm. This concept is due to Bertsekas [3], and independently, Tardos [6].

Definition 1 (Epsilon Optimality) A flow x or a pseudoflow x is called -optimal for some and

, if ijc for all),(ji in the residual network)(xG .

It is well-known that an -optimal flow is optimal for the minimum cost flow problem if 0= . When

the arc costs are integers, any -optimal flow is optimal for n1/< , as the following lemma establishes:

Lemma 1 For a minimum cost network problem with integer costs, if C , any flow x is -optimal.

If n1/< , then any -optimal flow is an optimal flow.

Proof: See Ahuja et al. [2], page 363.

We call an -optimal flow x that also satisfies the condition Dcx = an -optimal solution (to the

constrained maximum flow problem). We call an arc),(ji in the residual network)(xG an admissible

arc if 0<2/ ijc , and a path consisting entirely of admissible arcs, an admissible path. We define

the admissible network of a given residual network as the network consisting solely of admissible arcs.

We represent the outgoing arcs of a node i , i.e. the forward star of i , with)(iF , and the incoming arcs

of node i , i.e. backward star of i , with)(iB (in the residual network)(xG , with respect to a flow or

pseudoflow x). We also represent the admissible paths with predecessor indices. For a given admissible

path,)(ipred represents the node on the path that comes immediately before node i .

THE COST SCALING ALGORITHM

The algorithm and its procedures are formally described in Figures 1, 2 and 3. In another paper, we show

that the algorithm runs in))(log(2 nCmnO time. The cost scaling algorithm obtains a series of -optimal

solutions with decreasing values of , starting with C= . The algorithm then performs cost scaling

phases by iteratively applying the improve_approximation procedure that transforms an -optimal

solution into an 2/ -optimal solution. At the end of every -scaling phase, the flow is an 2/ -optimal

solution to the constrained maximum flow problem, and at the end of the last -scaling phase, n/1< .

Thus, by Lemma 1, the algorithm terminates with an optimal solution to the constrained maximum flow

problem.

algorithm cost_scaling

begin

 set 0:= ; 0:=x ; C:= ;

 while n/1 do

 improve_approximation;

 set 2/:= ;

 end while

end
Figure 1: The cost scaling algorithm

At the beginning of an -scaling phase, the solution),(x is -optimal for the constrained maximum

flow problem by Definition 1 and Theorem 1. Procedure improve_approximation converts this -optimal

solution to an 2/ -optimal solution (i) by converting the flow to an 2/ -optimal pseudoflow, and then

(ii) by converting the 2/ -optimal pseudoflow to a flow and (iii) by restoring the condition Dcx = via

flow augmentations on admissible paths from s to t . Thus, at the end of an -scaling phase,),(x is

an 2/ -optimal solution to the constrained maximum flow problem.

procedure improve_approximation;

begin

 for every arc Aji),(do

 if 2/>ijc then

 set 0:=ijx ;

 else if 2/<ijc then

 set ijij ux = ;

 end if

 end for

 while there is an active node i in the network do

 if there is an admissible arc),(ji in)(xG then

 push }),({min:= ijrie units of flow from node i to node j ;

 else

 set 2/min)(:=)()(ijiFj cii ;

 end if

 while Dcx < do

 P := find_admissible_path;

 augment })/(,min{min:=
),(),(ijPjiijPji ccxDr units of flow along P and),(st ;

 end while

 end while

end
Figure 2: The procedure improve_approximation of the cost scaling algorithm

The procedure improve_approximation first creates an 2/ -optimal pseudoflow from an -optimal

flow, but this may create imbalances at some nodes. The procedure then pushes flows from active nodes to

inactive nodes to convert the pseudoflow into a flow. After each push, if Dcx < , the procedure

find_admissible_path identifies an admissible path and we push the required amount of flow from s to t

to restore Dcx = . When an active node contains no admissible arcs, we increase the node potential to

create admissible arcs emanating from that node. Figure 2 formally describes the procedure

improve_approximation, and Figure 3 describes the procedure find_admissible_path.

COMPUTATIONAL RESULTS

In order to test the empirical performance of the cost scaling algorithm, we generated problem instances

using a random network generator similar to the one that was described in Çalışkan [4] and compared the

cost scaling algorithm to the capacity scaling and the double scaling algorithms. All algorithms were

procedure find_admissible_path;

begin

 set :=P ; si := ;

 while ti do

 j := First node in)(iF for which),(ji is admissible;

 if),(ji is admissible then

 add),(ji to P ;

 set pred(j) := i; i := j;

 else

 set 2/min)(:=)()(ijiFj cii ;

 if si then

 remove arc)),((iipred from P ;

 set i := pred(i);

 end if

 end if

 end while
 return P;

end
Figure 3: The procedure find_admissible_path of the cost scaling algorithm

coded in the same programming style, using the same network representation and data structures, so that

there was no performance variation due to differences in implementation. We coded all algorithms in C++

and compiled with Microsoft Visual C++ 7.1, using the optimization option /O2. We conducted the runs

on a computer with 2.0 GHz Intel Core 2 Duo processor and 2.0 GB of memory. We generated networks

that have up to 16384 nodes and 524288 arcs in our experiments. The arc capacities were uniformly

distributed in][1,104 and the arc costs were uniformly distributed in][1,102 . We generated 10 random

instances for each combination of the parameters. Table 1 shows the average CPU times.

The results in Table 1 show that the cost scaling algorithm is computationally superior. In the experiments,

the cost scaling algorithm was up to 56 times faster than the double scaling algorithm with an average of

25 times faster; and up to 173 times faster than the capacity scaling algorithm with an average of 32 times

faster. Furthermore, it was significantly faster than both algorithms for every instance of the test problems,

with a minimum of 19 times faster than the double scaling algorithm, and a minimum of 7 times faster than

the capacity scaling algorithm. Thus, the cost scaling algorithm is empirically the fastest combinatorial

polynomial algorithm for the constrained maximum flow problem.

CONCLUSION

In this research we propose a polynomial combinatorial algorithm for the constrained maximum flow

problem that runs in))(log(2 nCmnO time. The constrained maximum flow problem is important to

study as it has many applications and it is related to some important classical combinatorial optimization

problems. Our computational tests show that the proposed algorithm is significantly faster than the

existing combinatorial polynomial algorithms for the problem: on average, 25 times faster than the double

scaling algorithm, and 32 times faster than the capacity scaling algorithm.

Network

Size

CPU times (sec.) CPU Time

Ratios Cost

Scaling (i)

Double

Scaling (ii)

Capacity

Scaling (iii) n m (ii/i) (iii/i)

 256 2048 0.012 0.470 0.140 38 11

512 4096 0.060 1.495 0.495 25 8

1024 8192 0.188 4.258 2.466 23 13

2048 16384 0.773 14.544 10.857 19 14

4096 32768 2.895 67.509 93.971 23 32

8192 65536 13.111 297.225 611.961 23 47

16384 131072 155.013 † † - -

 256 4096 0.017 0.941 0.208 56 12

512 8192 0.078 2.206 0.569 28 7

1024 16384 0.272 7.487 7.607 27 28

2048 32768 1.110 26.189 37.608 24 34

4096 65536 4.352 104.308 294.300 24 68

8192 131072 19.102 490.647 1341.136 26 70

16384 262144 242.528 † † - -

 256 8192 0.041 1.923 0.413 47 10

512 16384 0.122 4.603 1.639 38 13

1024 32768 0.480 14.395 13.725 30 29

2048 65536 1.687 49.539 189.025 29 112

4096 131072 6.298 167.725 1088.305 27 173

8192 262144 26.549 670.588 † 25 -

16384 524288 325.738 † † - -

† The program was stopped after 1400 seconds elapsed

Table 1: CPU times of the cost scaling, double scaling and capacity scaling algorithms

REFERENCES

[1] Ahuja, R.K. and Magnanti, T.L. and Orlin, J.B. Network flows: Theory, algorithms and applications.

 Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] Ahuja, R.K. and Orlin, J.B. A capacity scaling algorithm for the constrained maximum flow problem.

 Networks, 1995, 25, 89-98.

[3] Bertsekas, D.P. A Distributed Algorithm for the Assignment Problem. Working Paper, Laboratory

 for Information and Decision Systems, MIT, Cambridge, MA, 1979.

[4] Çalışkan, C. A Double Scaling Algorithm for the Constrained Maximum Flow Problem. Computers

 and Operations Research, 2008, 35(4), 1138-1150.

[5] Goldberg, A. V. and Tarjan, R. E. Finding Mimimum Cost Flow Circulations by Successive

 Approximation. Mathematics of Operations Research, 1990, 15, 430-466.

[6] Tardos, É. A Strongly Polynomial Minimum Cost Circulation Algorithm. Combinatorica, 1985,

 5, 247-155.

