A COMPUTATIONAL STUDY OF THE CONSTRAINED MAXIMUM
FLOW PROBLEM

Cenk Calwskan, Woodbury School of Business, Utah Valley University, 800 W. University Pkwy,
Orem, UT 84058, (801) 863-6487, cenk.caliskan@uvu.edu

ABSTRACT

The constrained maximum flow problem is to send the maximum flow from a source node to a sink node
in a directed capacitated network for which the total cost of the flow is constrained by a budget limit. It has
many applications in telecommunications, logistics and computer networks. We present a new polynomial
cost scaling algorithm and compare its computational time against the existing polynomial combinatorial
algorithms. We show that the proposed algorithm is on average 25 times faster than the double scaling
algorithm, and 32 times faster than the capacity scaling algorithm.

INTRODUCTION

The constrained maximum flow problem is a variant of the maximum flow problem. Many algorithms
were proposed to solve the maximum flow problem, but very few articles appeared in the literature for its
variants. Ahuja and Orlin [2] propose an O(mS(n,m,nC)logU) capacity scaling algorithm, where n is

the number of nodes in the network; m , the number of arcs; C, the largest arc cost; U , the largest arc
capacity; and S(n,m,nC), the time to find a shortest path from a single source to all other nodes. Caliskan

[4] proposes a double scaling algorithm that runs in O(nmlog(n®/m)logmlogU log(nC)) time with the
use of dynamic trees due to Goldberg and Tarjan [5]. In this research, we present a cost scaling algorithm
that runs in O(n°mlog(nC)) time and provide the results of computational tests that show that the new
algorithm significantly outperforms the existing polynomial algorithms.

PROBLEM DESCRIPTION

Let G=(N,A) be a directed network consisting of a set N of nodes and a set A of arcs. In this
network, the flow on each arc (i, j) is represented by the nonnegative variable x; with a cost c; and
capacity u;. The constrained maximum flow problem is to send the maximum possible flow from a
source node se N toasink node te N where the total cost of flow is constrained by the budget, D.
For simplicity of exposition, we assume that there is an arc (t,s)e A with c,=0 and
Uyg = min{z(syi)eAusi,Z(i’t)eAuit}, an upper bound on the maximum flow from s to t. Without loss of

generality, we assume that all arc capacities and all arc costs are nonnegative integers, and there exists a
directed path between every pair of nodes in the network. These assumptions are not restrictive, as
transformations in Ahuja and Orlin [2] could be applied to satisfy them.

The problem then can be formulated as follows:

max th (1)
s.t.

D> %= 2. %X; =0 VieN ()
(i,j)eA (j.)eA

Z c;%; <D 3)
(i,j)eA
0<x, <u; V(i,j)eA (4)

Theorem 1 (Ahuja and Orlin [2]) Let x be an optimal solution to the minimum cost flow problem
with the same cost vector as the constrained maximum flow problem and with a source supply equal to the

optimal flow value for the constrained maximum flow problem. Then, x™ is also an optimal solution to
the constrained maximum flow problem if cx =D.

Proof: See Ahuja and Orlin [2], page 91.

By Theorem 1, we can modify any algorithm for the minimum cost network flow problem to solve the
constrained maximum flow problem. Our cost scaling algorithm for the constrained maximum flow
problem is based on this idea.

PRELIMINARIES

We denote the largest arc capacity in G by U, the largest arc cost by C, the number of nodes by n,
and the number of arcs by m. For each node ie N, we call F(i,G)={jeN|(i, j) G} the forward

star of i in G. Similarly, for each node ie N, wecall B(i,G)={jeN|(],i) G} the backward star
of iin G. The index of the node preceding a given node i in a path is denoted by pred(i).

A flowisafunction x: A— R"U{0} that satisfies Egs. 2 and 4. The value of X, is called the value of

flow x. If a flow x also satisfies Eq. 3, it is called a feasible flow. A pseudoflow is a function
x: A— R"uU{0} that satisfies only Eq. 4. For a pseudoflow x, we define the imbalance of node i€ N

as follows: e(i) = Z(j’i)eiji —Z(i’j)eAxij :

If e(i) >0 for some node i,thenwe call node i an excess node, and we call e(i), the excessof node
I . We also call a node that is an excess node, an active node. If e(i) <0 for some node i, then we call
node i adeficit node, and we call —e(i), the deficitof node i.If e(i) =0 forsomenode i, thenwe call

node i a balanced node. We also call a deficit or a balanced node, an inactive node. A pseudoflow with
e(i)=0 forallieN isa flow.

Given a flow or pseudoflow x, the corresponding residual network G(x) is defined as follows: We
replace each arc (i, j) € G with two arcs: (i, j) and its reversal (j,i), where c; =—c;. The residual

capacity of (i, j) is defined as r; =u; —X;, and the residual capacity of (j,i), as r; =X;. We only
include in G(x) arcs with positive residual capacity. We associate a node potential z(i) for each node

ie N . With respect to a set of node potentials =, we define the reduced cost of an arc (i,) as

¢ =¢; —z(i)+z(]). We use the concept of & -optimality of the minimum cost flow problem in our cost
scaling algorithm. This concept is due to Bertsekas [3], and independently, Tardos [6].

Definition 1 (Epsilon Optimality) A flow x or a pseudoflow x is called &-optimal for some & and
7, if ¢f >—¢ forall (i,]) inthe residual network G(x).

It is well-known that an ¢ -optimal flow is optimal for the minimum cost flow problem if &£ =0. When
the arc costs are integers, any ¢ -optimal flow is optimal for & <1/n, as the following lemma establishes:

Lemmal Foraminimum cost network problem with integer costs, if £ >C , anyflow x is & -optimal.
If £<1/n,thenany &-optimal flow is an optimal flow.

Proof: See Ahuja et al. [2], page 363.

We call an & -optimal flow x that also satisfies the condition cx =D an ¢ -optimal solution (to the
constrained maximum flow problem). We call an arc (i, j) in the residual network G(x) an admissible

arc if —g/2<cj <0, and a path consisting entirely of admissible arcs, an admissible path. We define

the admissible network of a given residual network as the network consisting solely of admissible arcs.
We represent the outgoing arcs of a node i, i.e. the forward star of i, with F(i), and the incoming arcs

of node i, i.e. backward star of i, with B(i) (in the residual network G(x), with respect to a flow or

pseudoflow x). We also represent the admissible paths with predecessor indices. For a given admissible
path, pred(i) represents the node on the path that comes immediately before node i .

THE COST SCALING ALGORITHM

The algorithm and its procedures are formally described in Figures 1, 2 and 3. In another paper, we show
that the algorithm runs in O(n’mlog(nC)) time. The cost scaling algorithm obtains a series of & -optimal

solutions with decreasing values of &, starting with & =C . The algorithm then performs cost scaling
phases by iteratively applying the improve_approximation procedure that transforms an & -optimal
solution into an &/ 2 -optimal solution. At the end of every ¢ -scaling phase, the flow isan &/2 -optimal
solution to the constrained maximum flow problem, and at the end of the last & -scaling phase, £ <1/n.
Thus, by Lemma 1, the algorithm terminates with an optimal solution to the constrained maximum flow
problem.

algorithm cost_scaling
begin
set 7:=0; x:=0; ¢:=C;
while £>1/n do
improve_approximation;
set £:=¢/2;
end while
end
Figure 1: The cost scaling algorithm

At the beginning of an & -scaling phase, the solution (x,7) is & -optimal for the constrained maximum
flow problem by Definition 1 and Theorem 1. Procedure improve_approximation converts this & -optimal
solution to an &/2 -optimal solution (i) by converting the flow to an /2 -optimal pseudoflow, and then
(ii) by converting the /2 -optimal pseudoflow to a flow and (iii) by restoring the condition cx =D via
flow augmentations on admissible paths from s to t. Thus, at the end of an & -scaling phase, (x,7) is
an &/ 2 -optimal solution to the constrained maximum flow problem.

procedure improve_approximation;
begin
for everyarc (i, j) e A do
if ¢f >&/2 then
set x; = 0;
else if ¢ <-¢/2 then
set X; =U;;
end if
end for

while there is an active node i in the network do
if there is an admissible arc (i, j) in G(x) then

push & := min{e(i), r,; }units of flow from node i tonode j;
else
end if
while cx <D do
P:= find_admissible_path;
augment 6 := min{min jep ;> (D —cx)/z(i j)epcij} units of flow along P and (t,s);

end while
end while
end
Figure 2: The procedure improve_approximation of the cost scaling algorithm

The procedure improve_approximation first creates an £/2 -optimal pseudoflow from an & -optimal
flow, but this may create imbalances at some nodes. The procedure then pushes flows from active nodes to
inactive nodes to convert the pseudoflow into a flow. After each push, if cx <D, the procedure
find_admissible_path identifies an admissible path and we push the required amount of flow from s to t
to restore cx = D . When an active node contains no admissible arcs, we increase the node potential to
create admissible arcs emanating from that node. Figure 2 formally describes the procedure
improve_approximation, and Figure 3 describes the procedure find_admissible_path.

COMPUTATIONAL RESULTS
In order to test the empirical performance of the cost scaling algorithm, we generated problem instances

using a random network generator similar to the one that was described in Caliskan [4] and compared the
cost scaling algorithm to the capacity scaling and the double scaling algorithms. All algorithms were

procedure find_admissible_path;
begin
set P:=J; 1:=5;
while i#t do
j:=Firstnode in F(i) forwhich (i, J) is admissible;
if (i,]) isadmissible then

add (i,]) to P;
set pred(j) :=1; 1 :=J;
else
set z(i) ==z (i) + minjer i Cj +&/2;
if i#s then
remove arc (pred(i),i) from P;
set i := pred(i);
end if
end if
end while
return P;

end
Figure 3: The procedure find_admissible_path of the cost scaling algorithm

coded in the same programming style, using the same network representation and data structures, so that
there was no performance variation due to differences in implementation. We coded all algorithms in C++
and compiled with Microsoft Visual C++ 7.1, using the optimization option /O02. We conducted the runs
on a computer with 2.0 GHz Intel Core 2 Duo processor and 2.0 GB of memory. We generated networks
that have up to 16384 nodes and 524288 arcs in our experiments. The arc capacities were uniformly

distributed in [1,10*] and the arc costs were uniformly distributed in [1,10°]. We generated 10 random
instances for each combination of the parameters. Table 1 shows the average CPU times.

The results in Table 1 show that the cost scaling algorithm is computationally superior. In the experiments,
the cost scaling algorithm was up to 56 times faster than the double scaling algorithm with an average of
25 times faster; and up to 173 times faster than the capacity scaling algorithm with an average of 32 times
faster. Furthermore, it was significantly faster than both algorithms for every instance of the test problems,
with a minimum of 19 times faster than the double scaling algorithm, and a minimum of 7 times faster than
the capacity scaling algorithm. Thus, the cost scaling algorithm is empirically the fastest combinatorial
polynomial algorithm for the constrained maximum flow problem.

CONCLUSION

In this research we propose a polynomial combinatorial algorithm for the constrained maximum flow
problem that runs in O(n’mlog(nC)) time. The constrained maximum flow problem is important to
study as it has many applications and it is related to some important classical combinatorial optimization
problems. Our computational tests show that the proposed algorithm is significantly faster than the
existing combinatorial polynomial algorithms for the problem: on average, 25 times faster than the double
scaling algorithm, and 32 times faster than the capacity scaling algorithm.

Network CPU times (sec.) CPU Time
Size Cost Double Capacity Ratios

n m Scaling (i) Scaling (ii) Scaling (iii) (ii/i) (iii/i)
256 2048 0.012 0.470 0.140 38 11
512 4096 0.060 1.495 0.495 25 8
1024 8192 0.188 4.258 2.466 23 13
2048 16384 0.773 14.544 10.857 19 14
4096 32768 2.895 67.509 93.971 23 32
8192 65536 13.111 297.225 611.961 23 47
16384 131072 155.013 T T - -
256 4096 0.017 0.941 0.208 56 12
512 8192 0.078 2.206 0.569 28 7
1024 16384 0.272 7.487 7.607 27 28
2048 32768 1.110 26.189 37.608 24 34
4096 65536 4.352 104.308 294.300 24 68
8192 131072 19.102 490.647 1341.136 26 70
16384 262144 242.528 T T - -
256 8192 0.041 1.923 0.413 47 10
512 16384 0.122 4.603 1.639 38 13
1024 32768 0.480 14.395 13.725 30 29
2048 65536 1.687 49.539 189.025 29 112
4096 131072 6.298 167.725 1088.305 27 173
8192 262144 26.549 670.588 T 25 -
16384 524288 325.738 T T - -

t The program was stopped after 1400 seconds elapsed

Table 1: CPU times of the cost scaling, double scaling and capacity scaling algorithms
REFERENCES

[1] Ahuja, R.K. and Magnanti, T.L. and Orlin, J.B. Network flows: Theory, algorithms and applications.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] Ahuja, R.K.and Orlin, J.B. A capacity scaling algorithm for the constrained maximum flow problem.
Networks, 1995, 25, 89-98.

[3] Bertsekas, D.P. A Distributed Algorithm for the Assignment Problem. Working Paper, Laboratory
for Information and Decision Systems, MIT, Cambridge, MA, 1979.

[4] Caliskan, C. A Double Scaling Algorithm for the Constrained Maximum Flow Problem. Computers
and Operations Research, 2008, 35(4), 1138-1150.

[5] Goldberg, A. V. and Tarjan, R. E. Finding Mimimum Cost Flow Circulations by Successive
Approximation. Mathematics of Operations Research, 1990, 15, 430-466.

[6] Tardos, E. A Strongly Polynomial Minimum Cost Circulation Algorithm. Combinatorica, 1985,
5, 247-155.

