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ABSTRACT 
 
Worker safety continues to be a significant issue in the construction industry. Construction Industry 
Institute (CII) uses Zero Accidents Techniques (ZAT) best practice to create and implement safety plans 
in construction projects. This study uses a regression-based heterogeneity analysis to cluster 
construction projects in groups that are homogeneous in terms of their operational and environmental 
conditions. The performance of construction projects with respect to their level of implementation of 
ZAT inside each homogeneous group is then evaluated and compared using Data Envelopment Analysis 
(DEA) technique. We then use Meta-frontier framework to evaluate and compare performance of 
different groups of construction projects (defined based on their operational environment) with each 
other. Our results show there is a significant difference in safety performance between the Light 
Industrial and Heavy Industrial sectors. 

 
 

INTRODUCTION 
Background 
 
The Construction Industry Institute (CII) is an organization of companies who all share the objective of 
performing or assisting in research to benefit the productivity and safety of the industry.  There have 
been many efforts by the CII to improve performance of construction projects with respect to their cost, 
time, and more importantly human safety. Due to extreme financial cost of incidents as well as moral 
obligation to employees, creating the safest possible workplace is of utmost importance to CII.  
The current best practice performed by CII for improving safety performance is called Zero Accidents 
Techniques (ZAT). The validations performed by CII on the effects of the safety best practice shows 
that as the ZAT best practice use in construction projects increases, their Recordable Incident Rate (RIR) 
decreases. However, most of the techniques performed are parametric. The objective of this paper is to 
present additional and/or new understanding regarding the degree of implementation of ZAT and its 
effect on safety outcomes in construction projects using a parametric approach called Data Envelopment 
Analysis (DEA). In this study we first identify sources of project heterogeneity with respect to safety 
performance, and then analyze the efficiency scores through DEA modeling to obtain an understanding 
of the relationship between ZAT implementation and safety performance.  
 
The Zero Accident Techniques (ZAT) 
 
The ZAT best practice includes thirteen components each of which has a weigh assigned by a panel of 
experts at CII. These components focus on: 1) Safety plan implementation, 2) Safety supervisor 
commitment, 3) Number of safety workers, 4) Extensiveness of safety orientation programs, 5) Presence 



 

 

of formal safety training, 6) Number of toolbox meetings, 7) Number of safety audits, 8) Pre-
Employment Drug Screenings, 9) Frequency of drug screening, 10) Number of near-miss investigations, 
11) Safety incentive use, 12) Use of safety performance criteria in contractor selection, and 13) 
Identifying safety risks. 

The Recordable Incident Rate (RIR) 
 
The Recordable Incident Rate (RIR) is a widely accepted measure of the level of safety on a job site.  
Equation 1 proposed by Bureau of Labor Statistics (BLS) [1] is designed to represent the average 
number of incidents present for 100 full time workers in one year, or for every 200,000 working hours. 
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                                                                                                         (1) 

Data Envelopment Analysis 
 
DEA [2] is a “non-parametric“ analysis technique that is used for examining the relative efficiency of a 
set of similar decision-making-units (DMUs) that are in charge of transforming a set of inputs to a set of 
outputs. DEA uses linear programming to define a frontier as the set of best performing DMUs that 
generate the maximum output given a specific input level or use the minimum input level to produce a 
given output level. The efficiency scores corresponding to all DMUs then are calculated in comparison 
with best performing DMUs. DEA does not need any assumption regarding the functional relationship 
between input and output variables to measure performance; instead DEA allows “the data to speak for 
itself”. In addition, DEA also doesn’t need all the factors to be reduced to a common unit, meaning they 
can have different scales [2]. 
 
DEA requires a prior definition of the modeling perspective, i.e., input orientation versus output 
orientation. An input-oriented DEA model calculates the level by which the inputs used by an 
organization can be reduced without altering the level of outputs produced by the organization, for 
example, how to lower inputs, such as budget or labor hours to maintain a certain standard, or level of 
outputs (cost growth, schedule growth, or safety performance). Alternatively, an output-oriented model 
calculates the level by which the outputs produced by an organization can be increased without altering 
the level by which inputs are used, for example, how to increase their performance in production 
quantities or quality using the same level of inputs. Moreover, DEA requires all the DMUs in each 
group to be similar, i.e., homogeneous, in terms of the nature of the operations they perform. 
 
DEA has been widely used in the literature as a tool for performance measurement and evaluation in 
various application areas, such as, measuring performance of highway maintenance contractors [3,4], 
measuring performance of construction contractors [5], and measuring performance of contractors in the 
prequalification process [6]. This paper is believed to be among the first studies that apply DEA for 
measuring performance of safety best practices in construction industry.   
 

IMPLEMENTATION 
Data 
CII has created a questionnaire of 550 questions pertaining to all aspects of project planning and 
execution, best practice implementations, and project outcomes. A representative from each of the 1800 
projects completed this 550-question survey. For this study, we were provided with data of 226 



 

 

industrial projects from this database. Each project contains information on project type, location, major 
classification, project delivery method, and various other characteristics which are required for this 
study. We filtered the data to include only those projects that had recorded their number of recordable 
incidents. Next, the ZAT data was checked for completeness. The projects that did not answer all 13 
ZAT questions were removed from the dataset because they would be unusable in this study.  At the 
completion of these criteria checks, there were 59 projects remaining in the data set for use in this study. 
 
The Model 

 
As it was mentioned before, this paper focuses on the application of DEA to evaluate the performance of 
CII’s ZAT. The DMUs in this paper are construction projects which are concerned with transforming a 
set of inputs (resources) to a set of outputs (associated with the outcomes after implementing ZAT). The 
input used in this paper is a weighted average index of the thirteen elements that make up ZAT; this 
aggregated index is known as the Best Practice Implementation Score (BPIS). In order to calculate the 
input variable, we combine all of the 13 separate elements that comprise the ZAT into one aggregate 
Best Practice Implementation Score. This score is one final number that represents the level of overall 
ZAT implementation that was conducted by the project. The method for calculating the BPIS was 
developed by CII and the same method and weightings were utilized in this study. Taking the survey 
responses from each of the 13 questions, and translating them to a scale of 0-1, with 0 being no 
implementation and 1 being the highest level of implementation of that specific action is the first step of 
calculating the aggregated Best Practice Implementation Score. Moreover, each component of the ZAT 
has been assigned a weighting by a panel of experts at CII. To calculate the aggregated ZAT BPIS, each 
component’s score for each project is multiplied by the weight of that component and are added up. For 
reasons that will be explained later, the output used is the inverse of the RIR. 
 
To define the type of DEA model to use for this study, we need to decide on the orientation of the model 
(i.e., input or output orientation) as well as its return to scale (i.e., variable or constant return to scale). 
DEA assumes data to be isotonic, meaning as inputs increase, outputs increase as well [7]. An output-
oriented DEA model used to assess safety would calculate the amount of improvement in the safety 
performance (or output) that can be achieved using the same amount of input, or safety practice 
implementation level. In this study we have an undesirable output, i.e., RIR; hence our analysis uses the 
inverse of the output, i.e., 1/RIR, which is maximized by minimizing the RIR. By using the inverse of 
the RIR as the output variable we make sure that our data shows the isotonic behavior required in DEA 
analysis [8]. In terms of the return to scale (i.e., variable return to scale (VRS) or constant return to scale 
(CRS)) of the DEA model, the output variable that represents the number of injuries (RIR) cannot be 
improved past zero incidents. Thus, a VRS frontier is needed, since a CRS frontier continues extending 
linearly without taking any boundary constraint into account [3]. Consequently, we use the ‘‘BCC 
model’’ of DEA, as introduced in [8], to appropriately account for the VRS behavior. 

 
Heterogeneity Analysis 

DEA assumes groups of DMUs to be homogeneous. This means that DMUs are expected to be involved 
in similar activities, use a common set of inputs, produce a common set of outputs, and operate in 
comparable environments [9]. During review of possible sources of heterogeneity among construction 
projects, it was determined that potential sources of heterogeneity among projects are: 1) Location 
(Domestic, International); 2) Major Classification (Light Industrial, Heavy Industrial, Infrastructure, 



 

 

Buildings); 3) Characteristic (Grass Roots, Modernization, Addition, Brownfield or Co-Location); 4) 
Project Delivery Method (Design-Build, Multiple Design-Build, CM at Risk, Traditional D-B-B, 
Parallel Primes, Other); 5) Fast Tracked (yes, no); 6) Complexity (1-10); 7) Project Cost; 8) Project 
Duration; 9) Worker Density = Total Work Hours /(Project Duration * Project Cost). 
To test the level of influence each of the nine project characteristics has over the safety performance, a 
regression analysis was used using the RIR as a dependent variable and each of these nine project 
characteristics as independent variables. The RIR data was analyzed and it was determined that this 
frequency distribution most closely resembles a Zero Inflated Poisson's distribution. The distribution of 
this data is zero inflated because of the extreme number of times zero recordable incidents occurs. 
 
The Poisson (or log-linear) regression is chosen for this application because it is designed to be used 
when the dependent variable (total recordable incidents) consists of only natural, integer values [10].  
The total number of recorded incidents is a “counted” variable because the only possible values are 
integers from 0 to infinity.  The Poisson regression equation does normalize the total number of 
recordable incidents for the length of the project by defining the dependent variable as the 
log(count/time). This is important so that longer projects are not penalized for having more time in 
which incidents can possibly occur. The statistically significant results are shown in Table 1. The 
parameters in this regression model all contain a Chi Squared (shown as Pr>ChiSq in the column 
heading) value of less than 0.05, which defines the variable as statistically significant. The statistically 
significant variables to the Normal Poisson group are: 1) Project Location (Domestic, International); 2) 
Major Classification (Light Industrial, Heavy Industrial); 3) Characteristic (Grass Roots, Modernization, 
Addition, Brownfield or Co-Location); and 4) Project Cost. 

 
Table 1: SAS Software Results Output for Zero Inflated Poisson Regression 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter   DF Estimate Standard 
Error 

Wald 95% Confidence 
Limits 

Wald Chi-
Square 

Pr > 
ChiSq 

Intercept   1 -12.022 0.1904 -12.3952 -11.6487 3984.82 <.0001 
country_r International 1 -1.2116 0.1095 -1.4263 -0.9969 122.35 <.0001 
country_r United States 0 0 0 0 0 . . 
majorcls Heavy Industrial 1 -1.0795 0.1205 -1.3157 -0.8433 80.22 <.0001 
majorcls Light Industrial 0 0 0 0 0 . . 

char Addition 1 0.4544 0.1963 0.0697 0.839 5.36 0.0206 

char Brownfield or Co-
location 1 1.2104 0.2329 0.7539 1.667 27 <.0001 

char Grass Roots 1 0.6375 0.1839 0.277 0.9979 12.01 0.0005 
char Modernization 0 0 0 0 0 . . 

projectcost1   1 0.0008 0.0001 0.0007 0.001 112.86 <.0001 
 

The statistically significant factors accounting for heterogeneity were used by a statistical software 
package named JMP to cluster the projects accordingly.  JMP uses a hierarchical process to take the 
smallest clusters of one project, and combine them with other clusters until the desired number of groups 
is obtained.  JMP assigns a “distance” between the values of each variable and then combines groups of 
projects having the least total “distance” between them. The selected clustering scenario that provides 
the maximum level of homogeneity while keeping the cluster sizes large enough to perform DEA is 
shown below in Table 2. These four clusters were subjected to DEA analysis, the results of which are 
presented in the next section. 



 

 

DEA RESULTS AND DISCUSSION 
 
Once the clusters of DMUs (projects) are formed, we run the BCC DEA model for each cluster 
separately. Table 3 shows the summary statistics for the DEA scores of projects in all four clusters. The 
advantage of this clustering step is that each project is compared with the projects that have similar 
operational conditions. Thus their estimated efficiency scores are obtained as a result of a fair 
comparison. However, another important question is how these groups of DMUs have performed in 
comparison with each other, in terms of using the available resources and improving performance of 
projects with respect to their safety practices. A Meta-Frontier analysis [11,12] is used to compare 
homogeneous groups of DMUs with each other and to investigate inherent differences among the 
groups. 
 

Table 2: Characteristics of the Four Clusters. 

 

The meta-frontier framework was implemented by first analyzing each group and estimating an 
efficient frontier for each homogeneous cluster of DMUs (as performed and shown in Table 3). Next the 
DMUs are all pooled together irrespective of their clusters and an estimate of a Meta-Frontier is 
calculated. The result of such analysis has been shown in the last column of Table 3. Once we calculate 
the efficiency of each DMU (construction project) with respect to its group frontier and also meta-
frontier, then we can calculate the so-called meta-technology ratio (MTR) as the ratio of the efficiency 
score of each DMU with respect to its group frontier to the efficiency of that DMU with respect to the 
meta-Frontier. This meta-technology ratio can be used to identify which homogeneous groups are closer 
to the meta-frontier and are outperforming others or which homogeneous groups seem to have some 
inherent differences to other groups.  

Table 3: DEA Results Tables 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 All clusters 
Average Efficiency Score 0.382 0.414 0.696 0.600 0.283 
Median Efficiency Score 0.182 0.269 0.756 0.619 0.141 
Standard Deviation 0.370 0.361 0.320 0.381 0.310 
Maximum Efficiency Score 1 1 1 1 1 
Minimum Efficiency Score 0.036 0.066 0.152 0.028 0.013 
Number of Efficient DMUs 4 3 4 4 7 
Number of Inefficient DMUs 18 12 6 8 52 

 
Table 4 shows the MTR for all clusters. As you can see average MTR for cluster 4 is larger than 

other clusters. This shows that cluster 4 forms a major part of the meta-frontier and on average projects 
that are in cluster 4 (i.e., projects that are international, light heavy, modernization/grass roots/addition) 
have performed better that other groups of projects in terms of performing the ZAT best practice and 
reducing their recordable incidents. Projects in the first cluster (i.e., projects that are domestic, light, 



 

 

modernization/addition) have the second rank in terms of their performance for implanting ZAT best 
practice. Overall looking at the results in Table 4 shows that Cluster 1 and 4 which are mainly related to 
Heavy industrial projects have performed better than clusters 2 and 3 that are related to Light industrial 
projects. 

Table 4: Efficiency Scores and MTRs of All DMUs 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Average MTR 0.763 0.547 0.176 0.946 
Median MTR 0.937 0.436 0.186 1.000 
Standard Deviation 0.302 0.249 0.059 0.075 
Maximum MTR 1 1 0.237 1 
Minimum MTR  0.026 0.348 0.030 0.810 
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