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ABSTRACT

Researchers have revealed that a reduction in lead-time uncertainty could paradoxically increase
inventories. The scholarly consensus is that this paradox is important primarily for two reasons. First, the
phenomenon comes into play at common in-stock service levels for most firms. Second, the paradox implies
that conventional use of the normal distribution to characterize out-of-stock exposure risk will produce
flawed prescriptions for managing lead time—namely, that less uncertainty would benefit safety inventory.
This research note unravels the paradox of lead-time uncertainty and assesses its importance to supply chain
practitioners.

INTRODUCTION

Scholars have discovered that less lead-time uncertainty may paradoxically increase inventory. More
importantly, the scholarly consensus is that this paradox comes into play for common service levels, where
it would invalidate prescriptions for managing lead-time based on the normal approximation of the
distribution of demand over the out-of-stock (OOS) exposure period. This research note unravels the
paradox of lead-time uncertainty (hereafter, the paradox) and assesses its importance to effective lead-time
management. The research questions are as follows:

1. What are the conditions that enable the paradox to come into play at common service levels?

2. What is the impact of lead-time uncertainty on inventory under these conditions?
BACKGROUND AND LITERATURE REVIEW

Song [13] revealed that it is possible for safety inventory to increase in response to a decrease in lead-time
variability in a simple base-stock system. Song et al. [14] proved that this paradoxical phenomenon could
also occur in stochastic continuous-review systems. Meanwhile, Chopra et al. [3] argued that the
phenomenon affects most firms and demonstrated how the normal approximation of OOS exposure risk
would produce flawed prescriptions for managing lead-time levers. For some scholars, these
demonstrations provided additional evidence of the fallacy of using the normal distribution [2], [8], [16].
The study encouraged others to consider different candidate distributions, [1], [6], [9], [10], [12].
Additionally, it inspired Dullaert and Zamparini [5] to use paradox as a novel explanation for inconsistent
and sometimes contradictory shippers’ perceptions of the value of less lead-time uncertainty.

Perhaps, the best way to understand the nature of the paradox is to compare the effects of a decrease in lead-
time variability on both symmetrical and asymmetrical statistical forms under identical conditions. For



example, assume that the distribution of demand (D) has a mean of 20 units/period and a standard deviation
of 15 units/period, while the distribution of lead-time (L) has a mean of 10 periods and a standard deviation
of 7 periods. If D and L are independent random variables and X represents demand over the OOS
exposure period, classic equations (1) and (2) would produce parameters of px = 200 units/cycle and ox =
147.82 units/cycle for the base case. Decreasing lead-time variability (or) from 7 to 4 periods would
decrease ox from 147.88 to 93.01 units/cycle. Figure 1 overlays the effect of this decrease on the base-case
normal (symmetrical) distribution of X. The vertical lines delineate the reorder points (ROP) that would
satisfy a 0.60 CSL before and after the decrease.

Figure 2 shows the directly comparable results for the gamma (asymmetrical) distribution. Observe that the
normal approximation predicts that the decrease in ox would decrease the reorder point and thus safety
stock (ROP-px). By contrast, the gamma distribution predicts that the ROP and safety stock would increase.

Hx = Mp * pr (1)
ox= /HLG%JF wdor (2)
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Figure 1. Reorder points for decrease in o from 7 to 4 for normal X
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Figure 2. Reorder points for decrease in o from 7 to 4 for gamma X



The foregoing illustration relies on three conditions: (1) a positive-skewed distribution of demand over
lead-time, (2) independent pr and o, and (3) a relatively low CSL. Empirical evidence indicates that lead-
time distributions often lean to the left [4], [7], [11], [15]. These findings are important, for positively
skewed lead-time distributions imply that similar attributes would characterize the distribution X. Chopra et
al. [3] addressed the low CSL condition by first acknowledging that “most firms aim for fill rates between
97 and 99% (and not cycle service levels)” and then arguing that these fill-rate targets imply CSLs between
50 and 70%. They developed the numerical example in Table 1 to support the argument. This claim and
other computational evidence led to the conclusion that, for firms operating at CSLs in the 50 to 70% range,
“decreasing lead time is the right lever if they want to cut inventories, not reducing lead time variability.”

Table 1. Cycle service Levels and fill rates as a function of reorder points®

Reorder Point ~ Safety Stock Cycle Service Level Expected Short  Fill Rate

5000 0 0.500 282.09 0.9718
5040 40 0.523 262.55 0.9737
5080 80 0.545 243.90 0.9756
5120 120 0.567 226.15 0.9774
5160 160 0.590 209.29 0.9791
5200 200 0.611 193.30 0.9807
5240 240 0.633 178.19 0.9822
5280 280 0.654 163.93 0.9836
5320 320 0.675 150.50 0.9850
5360 360 0.695 137.88 0.9862
5400 400 0.714 126.06 0.9874

D is normal(up = 2500, op=500); L=2, Q=10000
X is normal (px =5000, ox = 707.11)

Safety stock = ROP - ux
Fill rate = 1 - ESC/Q
* Adapted from [3]

EXPERIMENTS

The experiments in this research note replicate the best-case computational evidence supporting the
foregoing claims under the following best-case conditions: CSL = .60 and L is gamma distributed with p =
10, o = 5. Since the critical condition underlying the significance of the paradox is that CSLs directly
correspond to fill rates in the .97 to .99 range, the experiments verified the order quantity (Q) that would
achieve at least a .97 fill-rate target. The results (see Table 2) show that decreasing 6; from 5 to 3 units
would increase the ROP and thus safety stock by approximately 3 units. Meanwhile, the Q needed to satisty
a 98% fill rate would decrease substantially from about 1960 to 776 units. The reason is that less uncertainty
decreases the expected units short per cycle (ESC) and thus Q in the fill-rate calculation, 1 — ESC/Q.



Consequently, as shown in the last column in Table 2, the sum of safety and cycle stock (Q/2), or the
average stock, decreases dramatically from approximately 1,002 units to 388 units.

The key insight is that high fill rates imply low CSLs only when Q is large relative to px as shown in Table
2, where Q/ux =2. The original evidence presented to support the claim that high fill rates imply low CSLs
also corroborates this insight. This evidence (see Table 1) is based on Q = 10,000 and px = 5,000 units,
which produces Q/ux = 2.

Table 2. Replicated and expanded results for lead-time variability experiments

Experiments Replicated Results Expanded Results
Std. Reorder Short /
Lead Time  Mean Dev. Safety Point Order Mean Ratio Cycle Short/  Average
Process” () (oL) Stock (ROP) Qty (Q) (Ux) (Q/px) (ESC) Yr° Stock®
10 5 20.3 220.3 1,960.4 200 9.8 39.2 146.0 1,002
10 4 22.0 222.0 1,590.7 200 8.0 31.8 146.0 818
Gamma® 10 3 22.7 222.7 1,257.9 200 6.3 252 146.0 652
10 2 22.7 222.7 977.1 200 4.9 19.5 146.0 511
10 1 22.5 222.5 775.9 200 3.9 15.5 146.0 388

Cycle service level (CSL) = .60; fill rate (fr) = .98
* discrete approximation

® S/Q*ESC, where S = 365 periods/year x pp
“cycle + safety inventory

CONCLUSIONS

The paradox of lead-time reliability refers to an incongruous increase in safety stock that could result from a
decrease in lead-time wvariability. The enabling conditions include (1) positively skewed lead-time
distributions, (2) independent lead-time parameters, and (3) cycle service levels in the 50 to 70% range.
Empirical evidence supports the first condition, whereas the last two conditions undermine the practical
significance of the paradox. The reason is that they produce an order quantity that is larger than mean
demand during lead time. As a result, less uncertainty would decrease cycle stock far more than it would
increase safety stock.

Thus, the findings support the following conclusions. First, although the normal approximation may not
provide the best characterization of the distribution of demand over the OOS exposure period, it does
correctly predict that less lead-time uncertainty will reduce inventories. Second, the central argument
supporting the significance of the paradox of lead-time reliability actually undermines its practical
significance. Finally, managers should be wary of prescriptions for managing lead-time reliability based
solely on changes in safety stock.
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